39 research outputs found

    An acoustic multi-touch sensing method using amplitude disturbed ultrasonic wave diffraction patterns

    Get PDF
    This paper proposes an acoustic multi-touch tactile sensing method. The proposed method is based on an amplitude disturbed ultrasonic wave diffraction pattern. An A0 Lamb wave transmitted in a thin finite copper plate is processed to provide tactile information, for one or two fingers. A touch event is localized by identifying the diffraction signals among a database of diffracted Lamb wave references. Statistic models are used to improve the localization reliability. An artificial silicone finger is used in the calibration procedure. This touch interface is evaluated as a 2-touch interface

    Dielectric Elastomer Actuated Systems and Methods

    Get PDF
    The system of the present invention includes an actuator having at least two electrodes, an elastomeric dielectric film disposed between the two electrodes, and a frame attached to the elastomeric dielectric film. The frame provides a linear actuation force characteristic over a displacement range. The displacement range is preferably the stroke of the actuator. The displacement range can be about 5 mm and greater. Further, the frame can include a plurality of configurations, for example, at least a rigid members coupled to a flexible member wherein the frame provides an elastic restoring force. In preferred embodiments, the rigid member can be, but is not limited to, curved beams, parallel beams, rods and plates. In a preferred embodiment the actuator can further include a passive element disposed between two flexible members such as, for example, links to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. Further, the actuator can include a plurality of layers of the elastomeric dielectric film integrated into the frame. The elastomeric film can be made of different materials such as, for example, acrylic, silicone and latex

    Acoustic Wave Approach for Multi-Touch Tactile Sensing

    Get PDF
    International audienceIn this communication, we present a high resolution tactile plate that can localize one or two contact fingers. The localization principle is based on Lamb wave absorption. Fingers' contact will generate absorption signals while Lamb waves are propagating in a thin finite copper plate. These signals can be related to the contact positions and can be calibrated before the use of tactile plate. Fingers' contact positions are calculated by finding the closest calibration signal to the measured signal. Positions are carried out in less than 10 ms with a spatial resolution of 2 mm for one finger localization. Multi-points localization by this technology is developed and a two-point case is initialized and tested. Several optimization methods are also presented in this paper, as the double validation check which could improve the accuracy of single-point localization from 94.63% to 99.5%

    Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner

    Get PDF
    Beam distortion profiles are studied for scanning devices that have a single mirror with two rotational degrees of freedom (DOF), also named tip/tilt scanners. The case of a fast steering scanner used for high power material processing applications is studied. The scanner has a bandwidth of 700 Hz, a range of motion of ±52 mrad (±3 deg), and a resolution <5 μrad. The main dominant parameters that affect the distortion profile are identified. Furthermore, a vector analysis is derived to represent these distortions, and equations of the correction factors used to compensate for the systematic errors are proposed. A final accuracy better than 0.05% is obtained when these compensation factors are taken into account. The derivation proposed here can be extended to any scanning device with a single mirror with two-rotation DOF

    Elastomeric actuator devices for magnetic resonance imaging

    Get PDF
    The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex

    Manipulation in MRI devices using electrostrictive polymer actuators: with an application to reconfigurable imaging coils

    Full text link
    Abstract- MRI (Magnetic Resonance Imagining) is a powerful medical diagnostic tool. Its value would be greatly increased if it was possible to physically manipulate objects within the MRI during imaging. However, the extraordinarily strong magnetic fields used by the MRI make conventional electromagnetic components, such as actuators and sensors, unusable. In this paper, it is shown that devices constructed using binary polymer based actuators, called Electrostrictive Polymer Actuators (EPAM) are able to function effectively within the MRI without degrading its imaging performance. These actuators eliminate the need for conventional electromagnetic actuators and their associated electronics. The binary nature of the actuators eliminates the need for feedback sensors to control the devices motion. The basic concept called Digital Mechatronics is briefly summarized in this paper. Its application to a reconfigurable MRI surface-imaging coil (RMIC) is also presented. Experimental results are presented that show the EPAM RMIC is completely compatible in the MRI and can be used to enhance the diagnostic capabilities of MRI. The paper also suggests other applications of binary EPAM based actuators for use in MRI systems

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Compact fast-steering tip/tilt laser scanner for high power material processing applications

    No full text
    The common configuration for deflecting laser beams in two dimensions is based on two single-axis galvanometric scanners placed perpendicular to each other. Over recent years, these fast scanners have proved to be both very reliable and very accurate. They are widely available in the marketplace and have wide-ranging technical specifications. However, such a configuration is rather bulky and can not satisfy the needs of industry which seeks compact solutions for an easy integration of these scanning heads into their production lines. In addition, two separate mirrors leads to optical aberrations when these scanning heads are used in conjunction with scanning lenses, which are specially designed for a single entrance pupil. Therefore, a compact fast-steering tip/tilt laser scanner with a single mirror would act as a key component in diverse applications, e.g. in material processing, astronomy, intersatellite laser communications, imaging systems, bio-medical and ophthalmologic applications. The compact two-axis tilt laser scanner presented in this work can perform a variety of functions such as image tracking, beam stabilization and alignment, line-of-sight pointing, and scene scanning. Designing such a scanner required a multi-disciplinary approach involving optics, mechanics, electromagnetics, sensors and control theories. The scanner is composed of one single mirror with a large active area and has a single point of rotation for the two axes of tilt. Moreover, the center of gravity coincides with the center of rotation to reach optimum dynamic behavior. The scanner's compact dimensions allow an easy integration in the various optical systems. Furthermore, the mirror is easily interchangeable which gives greater flexibility in the choice of the laser source. Another major advantage of the proposed design is its ability to be scaled down to miniaturized versions. The scaling depends mainly on the active surface of the mirror, which is generally specified by the application. The larger the mirror, the higher its inertia and the larger are the actuators in order to guarantee high performance. Two pairs of push-pull linear electromagnetic actuators are used to drive the mirror of the scanner. The mirror suspension is based on a sliding bearing composed of a cone-ball contact with optimized friction and wear behavior. A magnetic pre-load force is used to hold the mirror and to give sufficient rotational stiffness. Furthermore, a position transducer based on a photodetector and a miniature laser pen is integrated in the module and is used for closed loop feedback positioning. The mirror can be tilted around both axes by ± 61mrad (± 3.5°) with an accuracy better than 50μrad. Moreover, a differential resolution in the order of 2.5μrad, and settling times for maximum tip and tilt deflections of 10ms and 14ms respectively are achieved. The overall volume of the scanner is 30 x 40 x 50 mm3, and its total weight does not exceed 90g. Design, simulations and experimental investigations were carried out in this work in order to optimize the different components of the tip/tilt scanner. These components are: the motors, the bearing system, the position transducer and the feedback control loop. An analytical model that allows an optimization of the geometrical parameters for an electromagnetic actuator based on rectangular coils and magnets is proposed. This model proved to be very reliable and can be extended to the design of a variety of electromagnetic driving systems. In addition, an extensive analysis of the beam path distortions generated when a single mirror is pivoted around two axes is covered. Furthermore, correcting equations used to compensate for the systematic errors resulting from this configuration are proposed. The tip/tilt scanner is suited to a variety of applications in industrial material laser processing. These applications are not just restricted to conventional processes like welding, cutting, drilling, and marking, but also to new technologies such as micro-manipulation of parts by laser. In this new approach, bending and shrinkage of the material result due to laser irradiation, allowing fast adjustment and positioning of micro-mechanical and opto-mechanical components with sub-micron accuracy. Furthermore, local annealing of shape memory alloys, leading to stiffness variation in monolithic parts such as micro-grippers, represents a very innovative application in smart materials. On the other hand, the scanner is also a key component in bio-medical and ophthalmologic applications. The first measurements carried out with the scanner for optical tomography of the retina appeared very promising. Furthermore, an optical tweezers set-up has been realized using the scanner, allowing easy and flexible manipulation of laser beam trapped cells and molecules

    Automated vision-based system for parallel contactless micromanipulation

    Get PDF
    This paper presents the automated parallel noncontact manipulation of glass beads ranging from 30 up to 300 μm in size under water. Non-contact micromanipulation is performed by generating controllable laser-induced thermocapillary flows that are capable of dragging the beads. Automated manipulation process is achieved with visual servoing in order to accurately manipulate the beads in a parallel and high-speed manner. Image correlation allowed to detect the bead positions and to provide these positions to a mirror scanner that addressed the IR laser beam at a certain position from the bead. By scanning the laser beam from one bead to another, automated parallel manipulation of beads at speeds in the range of mm·s-1 was demonstrated
    corecore